COMMENTS ON STRONGLY TORSION-FREE GROUPS

Shinichi Mochizuki

February 2009

In the present note, we discuss certain observations made by the author in February 2009 concerning *strongly torsion-free profinite groups* [cf. [Mzk2], Definition 1.1, (iii)]. These observations grew out of e-mail correspondences between the author, *Akio Tamagawa*, and *Marco Boggi*, as well as oral discussions between the author and Akio Tamagawa.

Definition 1. Let G be a profinite group.

(i) We shall say that G is ab-torsion-free if, for every open subgroup $H \subseteq G$, the abelianization H^{ab} of H is torsion-free [cf. Remark 1.1 below].

(ii) We shall say that G is ab-faithful if, for every open subgroup $H \subseteq G$, and every normal open subgroup $N \subseteq H$ of H, the natural homomorphism $H/N \to \operatorname{Aut}(N^{\operatorname{ab}})$ arising from conjugation is *injective*.

Remark 1.1. Note that G is strongly torsion-free in the sense of [Mzk2], Definition 1.1, (iii), if and only if it is topologically finitely generated and ab-torsion-free in the sense of Definition 1, (i).

Remark 1.2. One verifies immediately that if G is ab-faithful, then it is *slim*. Indeed, this is precisely the approach taken to verifying slimness in the proof of [Mzk2], Proposition 1.4.

Remark 1.3. It follows from Examples 3, 5 below that *neither* of the implications "ab-torsion-free \implies ab-faithful", "ab-faithful \implies ab-torsion-free" holds.

Remark 1.4. It is immediate from the definitions that every open subgroup of an ab-torsion-free (respectively, ab-faithful) profinite group is itself ab-torsion-free (respectively, ab-faithful).

Proposition 2. (Automorphisms Induced on Abelianizations) Let G be a topologically finitely generated profinite group that satisfies at least one of the following two conditions:

Typeset by $\mathcal{A}_{\mathcal{M}} \! \mathcal{S} \text{-} T_{\!E} \! X$

- (i) G is ab-faithful.
- (*ii*) G is ab-torsion-free and pro-nilpotent.

Let $\alpha : G \xrightarrow{\sim} G$ be an automorphism that induces the identity automorphism on the abelianization K^{ab} of every characteristic open subgroup K of G. Then α is the identity.

Proof. First, we recall that since G is topologically finitely generated, it follows that

 $(*^{char})$ the topology of G admits a basis consisting of characteristic open subgroups.

Next, we suppose that condition (i) is satisfied. By $(*^{char})$, it suffices to verify that α induces the identity automorphism on every quotient G/K, where K is a characteristic open subgroup of G. On the other hand, since [cf. (i)] the conjugation action of G/K on K^{ab} induces an injection $G/K \hookrightarrow Aut(K^{ab})$, the fact that α induces the identity automorphism on K^{ab} implies that α induces the identity automorphism on G/K, as desired. This completes the proof of Proposition 2 when condition (i) is satisfied.

Next, we suppose that condition (ii) is satisfied. First, let us observe that

(*^{open}) α induces the identity automorphism $H^{ab} \xrightarrow{\sim} H^{ab}$ on the abelianization of every open [i.e., not necessarily characteristic!] subgroup H of G such that $\alpha(H) = H$.

Indeed, since H^{ab} is torsion-free [cf. (ii)], this follows by observing that [cf. (*^{char})] there exists a characteristic open subgroup K of G such that $K \subseteq H$. That is to say, the induced map $K^{ab} \to H^{ab}$ has open image, hence induces a *surjection* $K^{ab} \otimes \mathbb{Q} \twoheadrightarrow H^{ab} \otimes \mathbb{Q}$ [i.e., where \mathbb{Q} denotes the rational numbers], so the fact that α induces the identity automorphism on H^{ab} follows from the fact that α induces the identity automorphism on K^{ab} .

Now since G is topologically finitely generated and pro-nilpotent [cf. (ii)], it is well-known and easily verified that there exists an exhaustive, nilpotent sequence of characteristic open subgroups

$$\ldots \subseteq G_{n+1} \subseteq G_n \subseteq G_{n-1} \subseteq \ldots \subseteq G_0 = G$$

[i.e., $[G, G_{n-1}] \subseteq G_n$]. Suppose that m is a positive integer such that α induces the identity on G/G_{m-1} , but not on G/G_m . [Note that if there does not exist such an m, then it follows immediately that α is the identity automorphism.] Thus, there exists an element $g \in G$ such that $\alpha(g)$, g have distinct images in G/G_m . Then by applying (*^{open}) to the open subgroup $H \subseteq G$ generated by g and G_{m-1} , we conclude that α induces the identity automorphism on H^{ab} . On the other hand,

since H/G_m is abelian, this implies that $\alpha(g)$, g have the same image in G/G_m , a contradiction. This completes the proof of Proposition 2. \bigcirc

To understand the generalities discussed above, it is useful to consider the following examples. Here, the first two examples [i.e., Examples 3, 4] are constructed abstractly; the remaining examples arise from arithmetic geometry. In the following, we let Σ be a *nonempty set of prime numbers*; we shall refer to as a Σ -integer any positive integer each of whose prime divisors belongs to Σ .

Example 3. Semi-direct Products.

(i) Suppose that $2 \notin \Sigma$. Let M be a nontrivial torsion-free $pro \Sigma$ abelian group, which we regard as equipped with an action by $N \stackrel{\text{def}}{=} \mathbb{Z}_2$ via the morphism $N \to \mathbb{Z}/2\mathbb{Z} \cong \{\pm 1\}$ [where $\{\pm 1\}$ acts on M in the evident fashion]. Then the semidirect product $G \stackrel{\text{def}}{=} M \rtimes N$ is a nonabelian profinite group, which is easily verified to be ab-torsion-free. [Indeed, if $H \subseteq G$ is an open subgroup, then one computes easily that $H^{ab} = H$ if $H \subseteq M \times (2 \cdot N)$, while $H^{ab} = H/(H \cap M) (\hookrightarrow N)$ if H is not contained in $M \times (2 \cdot N)$.] On the other hand, one verifies immediately that Gfails to be ab-faithful.

(ii) The example discussed in (i) prompts the following question:

Do there exist nonabelian pro-p [where p is a prime number] groups which are ab-torsion-free, but not ab-faithful?

The author does not know the answer to this question at the time of writing.

Example 4. Graphs of Anabelioids.

(i) Let \mathcal{G} be a graph of anabelioids [cf. [Mzk1], Definition 2.1] whose underlying graph \mathbb{G} is finite and connected. Suppose further that the anabelioid \mathcal{G}_e at each edge e of \mathbb{G} is the anabelioid associated to the trivial group, while the anabelioid \mathcal{G}_v at each edge v of \mathbb{G} is the anabelioid associated to a pro- Σ surface group \mathcal{G}_v [cf. Example 6, (i), below]. Write \mathcal{G} for the maximal pro- Σ quotient of the fundamental group of \mathcal{G} [cf. the discussion following [Mzk1], Definition 2.1]. Since \mathbb{G} is finite, it follows immediately that \mathcal{G} is topologically finitely generated.

(ii) One verifies immediately that the abelianization G^{ab} fits into a natural exact sequence

$$1 \ \rightarrow \ \bigoplus_v \ G_v^{\rm ab} \ \rightarrow \ G^{\rm ab} \ \rightarrow \ \pi_1(\mathbb{G})^{\rm ab} \otimes \widehat{\mathbb{Z}}^{\Sigma} \ \rightarrow \ 1$$

— where the direct sum ranges over the vertices v of \mathbb{G} ; $\pi_1(\mathbb{G})$ is the usual topological fundamental group of the graph \mathbb{G} ; $\widehat{\mathbb{Z}}^{\Sigma}$ is the pro- Σ completion of \mathbb{Z} . In particular, it follows immediately from the fact that each G_v^{ab} is torsion-free [cf.

Example 6, (i), below], together with the well-known fact that $\pi_1(\mathbb{G})$ is a free discrete group, that G^{ab} is torsion-free. Since any connected finite étale covering of \mathcal{G} is easily verified to be a graph of anabelioids as in (i), it follows by applying the above exact sequence to such connected finite étale coverings of \mathcal{G} that G is ab-torsion-free.

(iii) Next, let us observe that G is ab-faithful. Indeed, it suffices to verify that if $\mathcal{G}'' \to \mathcal{G}'$ is any cyclic finite étale covering of degree l, for $l \in \Sigma$, of graphs of anabelioids as in (i), then $\Gamma = \operatorname{Gal}(\mathcal{G}''/\mathcal{G}')$ acts nontrivially on the abelianization $(G'')^{\mathrm{ab}}$ of the maximal pro- Σ quotient G'' of the fundamental group of \mathcal{G}'' . To this end, observe that if Γ acts freely on \mathbb{G}'' [where we use primed and double-primed notation for the objects to associated to $\mathcal{G}'', \mathcal{G}'$ which are analogous to the objects associated to \mathcal{G} in (i)], then the nontriviality of the action of Γ on $(G'')^{\mathrm{ab}}$ follows from the ab-faithfulness of a free pro- Σ group of finite rank [cf. Example 6, (i), below]. Thus, it suffices to consider the case where $\Gamma (\cong \mathbb{Z}/l\mathbb{Z})$ fixes some vertex v''of \mathbb{G}'' lying over a vertex v' of \mathbb{G}' , hence arises as a quotient $G'_{v'} \to \Gamma$ [whose kernel may be identified with $G''_{v''}$]. But then the nontriviality of the action of Γ on $(G'')^{\mathrm{ab}}$ follows from the ab-faithfulness of the pro- Σ surface group $G'_{v'}$ [cf. Example 6, (i), below], together with the exact sequence of (ii), applied to \mathcal{G}'' . This completes the proof that G is ab-faithful.

(iv) Finally, let us observe that if there exist two distinct vertices v, w of \mathbb{G} such that the surface groups G_v , G_w arise from proper hyperbolic curves [so $H^2(G_v, \mathbb{F}_l) \cong H^2(G_w, \mathbb{F}_l) \cong \mathbb{F}_l$, for $l \in \Sigma$], then it follows that $\dim_{\mathbb{F}_l}(H^2(G, \mathbb{F}_l)) \ge 2$ — a fact that implies that, in this case,

G fails to be isomorphic to a pro- Σ surface group.

Indeed, it follows from the definitions that we have well-defined injective outer homomorphisms $\iota_v : G_v \hookrightarrow G$, $\iota_w : G_w \hookrightarrow G$. Moreover, by thinking of G as an inductive limit in the category of pro- Σ groups and considering the system of homomorphisms $G_u \to G_v$ (respectively, $G_u \to G_w$), where u ranges over the vertices of \mathbb{G} , given by the identity when u = v (respectively, u = w) and the trivial homomorphism when $u \neq v$ (respectively, $u \neq w$), one obtains a surjection $\rho_v : G \to G_v$ (respectively, $\rho_w : G \to G_w$) such that the outer homomorphism $\rho_v \circ \iota_v$ (respectively, $\rho_w \circ \iota_w$) is the identity on G_v (respectively, G_w), while the outer homomorphism $\rho_v \circ \iota_w$ (respectively, $\rho_w \circ \iota_v$) is the trivial homomorphism on G_w (respectively, G_v). Thus, the pairs (ρ_v, ρ_w) and (ι_v, ι_w) induce morphisms

$$H^2(G_v, \mathbb{F}_l) \times H^2(G_w, \mathbb{F}_l) \to H^2(G, \mathbb{F}_l) \to H^2(G_v, \mathbb{F}_l) \times H^2(G_w, \mathbb{F}_l)$$

whose composite is the *identity*. But this implies that $\dim_{\mathbb{F}_l}(H^2(G,\mathbb{F}_l)) \geq 2$, as desired.

Example 5. Local Absolute Galois Groups. Let k be a finite extension of the field \mathbb{Q}_p of p-adic numbers, for some prime number p. Then, as is well-known from *local class field theory*, we have a *natural isomorphism*

$$(k^{\times})^{\wedge} \xrightarrow{\sim} G_k^{\mathrm{ab}}$$

[where the " \wedge " denotes profinite completion]. By applying this isomorphism to the various open subgroups of G_k , we conclude that G_k is ab-*faithful*. On the other hand, it follows from the existence of nontrivial roots of unity in k that G_k fails to be ab-torsion-free, despite that fact that it is torsion-free [cf. [NSW], Corollary 12.1.3; [NSW], Theorem 12.1.7].

Example 6. Surface and Configuration Space Groups.

(i) Let G be a pro- Σ surface group [cf. [Mzk2], Definition 1.2]. Then, as is well-known, G is ab-torsion-free [cf. [Mzk2], Remark 1.2.2]. Moreover, one may verify easily that G is ab-faithful. [Indeed, since we are only concerned with the profinite group G up to isomorphism, we may assume without loss of generality that G arises from a hyperbolic curve of genus ≥ 1 . Now let $N \subseteq H$ be subgroups as in Definition 1, (ii). If N corresponds to a hyperbolic curve of genus ≥ 2 , then the desired injectivity follows as in the proof of [Mzk2], Proposition 1.4. If N corresponds to a hyperbolic curve of genus 1 [so $N \subseteq H$ corresponds to an isogeny of elliptic curves], then the desired injectivity follows immediately from an easy explicit computation of N^{ab} , H^{ab} .]

(ii) Let G be a pro- Σ configuration space group [cf. [Mzk2], Definition 2.3, (i)], where Σ is either equal to the set of all prime numbers or of cardinality one, that arises from a configuration space of dimension ≥ 2 associated to a hyperbolic curve of genus ≥ 2 . Then it follows immediately from [Mzk2], Theorem 4.7, that G fails to be ab-torsion-free. On the other hand, it is not clear to the author at the time of writing whether or not G is ab-faithful.

Example 7. Absolute Galois Groups of Function Fields. [This example was related to the author by A. Tamagawa.] Let k be an algebraically closed field of characteristic zero; V a normal proper variety over k; K the function field of V; G_K the absolute Galois group of K; G the maximal pro- Σ quotient of G_K . Write Div(V) for the free abelian group generated by the irreducible divisors of V. Then:

(i) By assigning to an element of K^{\times} its associated divisor of zeroes and poles, we obtain a homomorphism

$$K^{\times} \to \operatorname{Div}(V)$$

— which, as is well-known, determines an *injection* $\mathbb{P}(K) \stackrel{\text{def}}{=} K^{\times}/k^{\times} \hookrightarrow \text{Div}(V)$. In particular, it follows that $\mathbb{P}(K)$ is a *free abelian group*, so the natural homomorphism

$$\mathbb{P}(K) \to \varprojlim_N \ \mathbb{P}(K) \otimes \mathbb{Z}/N\mathbb{Z}$$

— where N ranges, in a multiplicative fashion, over the Σ -integers — is an *injection*.

(ii) Note that any k-linear automorphism α of K that induces the identity automorphism on $\mathbb{P}(K)$ is itself the identity. [Indeed, this follows from the observation that if $\alpha(f) = \lambda \cdot f$, $\alpha(f+1) = \mu \cdot (f+1)$, for $\lambda, \mu \in k^{\times}$ and $f \in K^{\times}$ such that $f \notin k^{\times}$, then [as is easily verified] $\lambda = \mu = 1$.]

(iii) Since k is algebraically closed, it follows immediately from Kummer theory [applied to K] that we have a natural isomorphism

 $\mathbb{P}(K) \otimes \mathbb{Z}/N\mathbb{Z} \xrightarrow{\sim} \operatorname{Hom}(G, \mathbb{Z}/N\mathbb{Z}(1)) \ (\cong \operatorname{Hom}(G, \mathbb{Z}/N\mathbb{Z}))$

for any Σ -integer N. From this isomorphism [applied to the various open subgroups of G], one concludes immediately, in light of the observations of (i) and (ii), that G is ab-torsion-free and ab-faithful.

Bibliography

- [Mzk1] S. Mochizuki, Semi-graphs of Anabelioids, Publ. Res. Inst. Math. Sci. 42 (2006), pp. 221-322.
- [Mzk2] S. Mochizuki, A. Tamagawa, The algebraic and anabelian geometry of configuration spaces, *Hokkaido Math. J.* **37** (2008), pp. 75-131.
- [NSW] J. Neukirch, A. Schmidt, K. Wingberg, *Cohomology of number fields*, *Grundlehren der Mathematischen Wissenschaften* **323**, Springer-Verlag (2000).